Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Miao Du* and Xiao-Jun Zhao

College of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China

Correspondence e-mail: dumiao@public.tpt.tj.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.040 wR factor = 0.102 Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis[2,5-bis(4-pyridyl)-1,3,4-thiadiazole]dithiocyanatocobalt(II) dihydrate

In the crystal structure of mononuclear $[Co(SCN)_2(L)_2(H_2O)_2]\cdot 2H_2O$ [*L* is 2,5-bis(4-pyridyl)-1,3,4-thiadiazole, $C_{12}H_8N_4S$], the Co^{II} atom exists in an octahedral environment composed of two N atoms of the SCN⁻ groups and two aqua ligands, along with the two N atoms from two monodentate *L* ligands that are positioned *trans* to each other. Hydrogenbonding interactions between the mononuclear units and uncoordinated water molecules result in a two-dimensional supramolecular network structure. The Co atom lies on a special position of $\overline{1}$ site symmetry.

Received 19 January 2004 Accepted 28 January 2004 Online 7 February 2004

Comment

Self-assembly processes involving metal ions and organic ligands constitute a central theme of supramolecular chemistry and crystal engineering (Leininger *et al.*, 2000). Recently, we have initiated a research program of synthesizing coordination polymers or supramolecules based on a pyridyl-substituted oxadiazole system (Du & Zhao, 2003). The title Co^{II} compound, $[Co(L)_2(SCN)_2(H_2O)_2]\cdot 2H_2O$, (I), represents a complex with the ligand 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (*L*).

The Co^{II} atom is located on a crystallographic inversion center and is coordinated by two water molecules and two SCN⁻ groups, as well as two *L* ligands that are *trans* to each other, in a distorted octahedral geometry (Fig. 1). The SCN⁻ ligands form C13–N5–Co1 and N5–C13–S2 angles of 159.7 (3) and 179.1 (3)°, respectively. In the *L* ligand, the two pyridine rings are nearly coplanar with the five-membered ring [dihedral angles = 3.5 (1) and 3.5 (2)°]. The ligand uses

Figure 1

A view of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms and uncoordinated water molecules are not shown. The suffix A denotes atoms at symmetry position (1 - x, 1 - y, 2 - z).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

only one of the pyridyl N atoms to coordinate to the Co atom; the other is engaged in hydrogen bonding with the uncoordinated water molecule.

An intermolecular $O1W-H1WA\cdots S2(x-1, y, z)$ hydrogen bond connects the coordinated water molecule to the thiocyanate group, thus forming a chain (Fig. 2). Additionally, the coordinated water molecule forms an O1W- $H1WB\cdots O2W$ hydrogen bond with the uncoordinated water molecule, which is also linked to an adjacent complex molecule through an $O2W-H2WB\cdots N4(2-x, 1-y, 1-z)$ hydrogen bond, furnishing a layer structure (Fig. 3 and Table 2).

Experimental

A solution of NH₄SCN (24 mg, 0.3 mmol) in H₂O (15 ml) was added to a CH₃OH/CHCl₃ solution (20 ml) of Co(ClO₄)₂·6H₂O (36 mg, 0.1 mmol) and 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (50 mg, 0.2 mmol). After *ca* 30 min of heating under reflux, a red solid formed. The solid was redissolved by the addition of more water (20 ml). The filtered solution was set aside and red crystals separated after one week, in 65% yield. Analysis, calculated for C₂₆H₂₄CoN₁₀O₄S₄: C 42.91, H 3.32, N 19.25%; found: C 42.88, H 3.09, N 19.44%.

Crystal data

$[Co(SCN)_2(C_{12}H_8N_4S)_2-$	Z = 1
$(H_2O)_2]\cdot 2H_2O$	$D_x = 1.572 \text{ Mg m}^{-3}$
$M_r = 727.76$	Mo $K\alpha$ radiation
Triclinic, $P\overline{1}$	Cell parameters from 674
a = 7.0566 (5) Å	reflections
b = 8.3022 (6) Å	$\theta = 2.3-24.2^{\circ}$
c = 14.8495 (10) Å	$\mu = 0.88 \text{ mm}^{-1}$
$\alpha = 104.593 \ (2)^{\circ}$	T = 293 (2) K
$\beta = 93.149 \ (1)^{\circ}$	Block, red
$\gamma = 112.148 \ (1)^{\circ}$	$0.38 \times 0.32 \times 0.22 \text{ mm}$
$V = 768.79 (9) \text{ Å}^3$	

Figure 3

The layered supramolecular structure. Hydrogen-bonding interactions are indicated by purple dashed lines.

Data collection

Bruker SMART CCD area-detector	2695 independent reflections
diffractometer	2126 reflections with $I > 2\sigma(I)$
ρ and ω scans	$R_{\rm int} = 0.050$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 8$
$T_{\min} = 0.731, \ T_{\max} = 0.830$	$k = -9 \rightarrow 9$
193 measured reflections	$l = -17 \rightarrow 14$

Refinement

Refinement on F^2 H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.040$ $w = 1/[\sigma^2(F_o^2) + (0.0535P)^2]$ $wR(F^2) = 0.102$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.01 $(\Delta/\sigma)_{max} < 0.001$ 2695 reflections $\Delta\rho_{max} = 0.46$ e Å $^{-3}$ 205 parameters $\Delta\rho_{min} = -0.28$ e Å $^{-3}$

Table 1

Selected geometric parameters (Å, °).

Co1-N1 Co1 N5	2.174(2)	Co1-O1W	2.118 (2)
$N1^{i}$ – Co1 – N1	180	N5-Co1-N5 ⁱ	180
N1-Co1-N5	88.71 (10)	N5-Co1-O1W	91.13 (10)
$N1 - Co1 - N5^{1}$ N1 - Co1 - O1W	91.29 (10) 86 49 (8)	$N5-Co1-O1W^{i}$ $O1W-Co1-O1W^{i}$	88.87 (10) 180
$N1-Co1-O1W^{i}$	93.51 (9)	01// 001 01//	100

Symmetry code: (i) 1 - x, 1 - y, 2 - z.

Table 2		
Hydrogen-bonding geometry	(Å,	°).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.86	2.472	3.304 (3)	162
0.87	1.900	2.766 (3)	174
	<i>D</i> -H 0.86 0.87 0.88	D−H H···A 0.86 2.472 0.87 1.900 0.88 1.966	$D-H$ $H \cdots A$ $D \cdots A$ 0.86 2.472 3.304 (3) 0.87 1.900 2.766 (3) 0.88 1.966 2.836 (4)

Symmetry codes: (ii) x - 1, y, z; (iii) 2 - x, 1 - y, 1 - z.

H atoms were placed geometrically (C–H = 0.93 Å and O–H = 0.86–0.88 Å) and included in the final refinement in the riding-model approximation, with displacement parameters set to $1.2U_{eq}(C)$ for C-bound H atoms and $1.5U_{eq}(O)$ for O-bound H atoms.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in

SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge financial support from the Natural Science Foundation of Tianjin (grant No. 033609711) and the Starting Funding of Tianjin Normal University (to MD).

References

- Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Du, M. & Zhao, X.-J. (2003). J. Mol. Struct. 655, 191-197.
- Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853-908.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.